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Abstract

The problem of plane-wave scattering from a convex body with a soft, rigid or impedance surface is considered. In

common with physical optics (PO), the proposed approach exploits the locality property of short-wave scattering.

However, in contrast to the PO approximation it considers the curvature of the target and the shadow-side fields. The

theory is based on the assumption that each element of integration in the Kirchhoff integral is a patch of a circular cylinder

perpendicular to the plane of incidence. Extensive comparisons with exact solutions for spheres of different sizes with

constant surface impedances have shown that the approach is more accurate than PO and keeps the PO-comparable

simplicity. Although the method is strictly valid for high frequencies, it gives good quantitative results down to resonant

frequency range. The approach was also tested on the problem of scattering from a rigid prolate spheroid. An example of

application of the technique to a prolate spheroid with a varying surface impedance is presented.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The scattering of a scalar wave by an obstacle is a fundamental problem of acoustics. It has attracted
considerable attention of investigators for many years. Exact analytical solutions to the scalar wave equation
exist only for a few geometries for which the separation of variables is possible [1]. For more complex shapes,
approximate analytical and numerical approaches have been developed. Some of the previous work is found in
Refs. [2–9]. Each of such techniques has an application domain, which is restricted in one or more by
configuration of the boundary, wave size of the scatterer, types of boundary conditions, the incidence or the
response direction, and the efficiency of numerical implementation.

At the resonant frequency range, the exact formulations (as, for example, the Helmholtz integral equation
[3,6]) are mainly used. With the help of certain procedures they are usually approximated by a system of linear
algebraic equations. At that, the number of unknowns, which dictates the matrix size of the system, increases
with increasing wavenumber. For large body problems (relative to a wavelength) this matrix becomes very
large. Therefore, for shorter waves the technique becomes increasingly inefficient owing to inadequacy of
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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computer resources. At high frequencies, one of possible alternatives is the method of physical optics (PO)
(Kirchhoff approximation) [4,10] which is frequently used to derive the wave scattered from an arbitrary
target. This wave is obtained as an integral over the surface elements, each of which has a reflection coefficient
equal to that of an infinite plane surface. Over the shadow part of the body, the field is taken to be zero. The
approach is simple and extremely efficient, since it requires no matrix solution. However, it is suitable for
treating only large objects with smooth surfaces. In addition, the PO prediction deteriorates as the scattering
direction moves further from the specular direction.

Recently a new approach was proposed to approximately solve scattering problems for soft and rigid
convex cylinders [11]. Similarly to PO, this technique exploits the locality property of short-wave scattering
and yields an analytical expression for the surface pressure and particle velocities. However, in contrast to PO
approximation it takes into account the curvature of the surface and does not suppose that the field vanishes
in the shadow region. By using this method, the result is that at the PO-comparable simplicity the accuracy of
the prediction in the non-specular direction (especially in forward direction) can be improved appreciably. In
Ref. [12], the technique was extended to the case of an impedance cylinder. In this paper, the approach is
generalized to three dimensions to handle a convex target bounded by a soft, rigid or impedance surface. The
analysis is based on the assumption that each element of integration in the Kirchhoff integral is a patch of an
infinite circular cylinder perpendicular to the plane of incidence passing through the point of integration.
2. Theory

Let ðx; y; zÞ and ðr; y;fÞ be basic Cartesian and spherical coordinate systems and S be a smooth boundary of
a convex body which possesses (in general) a surface impedance Z. The incident acoustic plane wave is
described as

pi ¼ e�iki�r, (1)

where ki ¼ kk̂i, k ¼ o=c ¼ 2p=l, o is the angular frequency, c the sound speed and l the wave length in the
medium, and r ¼ xx̂þ yŷþ zẑ. The symbols with ‘ ^ ’ denote unit vectors. The harmonic time dependence eiot

is assumed and suppressed. The wave comes from a source with angular data yi and fi.
The total pressure

p ¼ pi þ ps (2)

satisfies the Helmholz equation outside the scatterer and the impedance boundary conditions

qp

qn
� ikwp ¼ 0 (3)

on its surface. Here n is the outward normal to the surface S, w ¼ Z0=Z, Z0 ¼ cr0 is the characteristic
impedance and r0 the mass density of the medium. The value w ¼ 0 corresponds to a rigid target. For a soft
body, we have w ¼ 1 and

p ¼ 0 (4)

on its surface.
The scattered wave ps must satisfy the Sommerfeld radiation condition. According to the Kirchhoff integral

theorem, at far field it can be written in the form

psðMÞ � f ðyM ;fM Þ
e�ikrM

rM

. (5)

Here yM and fM are angular coordinates of an observation point M with the position vector rM and
f ðyM ;fM Þ is the scattering amplitude, which can be evaluated from the surface integration as

f ðyM ;fMÞ ¼ �
1

4p

Z Z
S

eikrP cosc qpðPÞ

qn
� ikpðPÞ cos a

� �
dSP. (6)
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In formula (6), rP is the position vector of a point P on S, c the angle between rM and rP, and a is that between
nP and rM . In view of Eq. (3), the last expression can be rewritten as

f ðyM ;fM Þ ¼ �
ik

4p

Z Z
S

eikrP coscpðPÞ½wðPÞ � cos a�dSP. (7)

For a soft target, formula (6) is reduced to

f ðyM ;fM Þ ¼
ikZ0

4p

Z Z
S

eikrP coscvnðPÞdSP, (8)

where

vnðPÞ ¼
i

kZ0

qpðPÞ

qn
(9)

is the normal component of the particle velocity at P. As usual, the scattering cross section is defined as

s ¼ 4pjf j2. (10)

Using PO approximation, we can readily estimate pðPÞ in Eq. (7) as

pðPÞ ¼

piðPÞ
2 cos g

cos gþ wðPÞ
for gp

p
2
;

0 for g4
p
2

8>><
>>: (11)

and vnðPÞ in Eq. (8) as

vnðPÞ ¼

�piðPÞ
2 cos g

Z0
for gp

p
2
;

0 for g4
p
2
:

8>><
>>: (12)

Here, g is the angle of incidence at P, i.e. the angle between nP and ð�kiÞ.
The cross section of the target by the plane of incidence, passing through the point P, is shown in Fig. 1. For

visualization, the origin O of the basic coordinate system and an observation point M are given at the same
plane. The point C indicates the centre of curvature at P for the contour of the section. The dashed line
xCC

n

M

γ
γ

yC

O

P

Fig. 1. Geometry of the problem.



ARTICLE IN PRESS
V.P. Chumachenko et al. / Journal of Sound and Vibration 310 (2008) 845–854848
presents the respective circle of curvature. In order to improve the estimates for pðPÞ and vnðPÞ, we consider
the vicinity of the point P on S as a patch of a cylinder, which is perpendicular to the above section and has the
circle of curvature as directrix.

Let ðxC ; yC ; zCÞ be a Cartesian coordinate system with x̂C ¼ nP and zC along the axis of the cylinder, and
ðr;j; zCÞ a cylindrical coordinate system with j ¼ 0 at yC ¼ 0 and xC40. The orientation of the systems we
choose in such a way that j increases when moving from the insonified region toward the shadow part of the
scatterer. Then

k̂i ¼ � cos gx̂C þ sin gŷC , ð13Þ

CM ¼ r cosjx̂C þ r sinjŷC þ zCẑC ð14Þ

and

piðMÞ ¼ e�iki�rM ¼ e�iki�OCe�iki�CM ¼ Aeikrðcosj cos g�sinj sin gÞ ¼ Aeikr cosðjþgÞ, (15)

where A is a constant for a fixed P. By using expansion of cosðjþ gÞ in powers of j, we obtain on the
scattering surface near P:

piðMÞ ¼ AeikRðcos g�j sin gþ���Þ � AeikRðcos g�j sin gÞ, (16)

where R ¼ jCPj is the radius of curvature.
In the neighbourhood of P, by separating variables in the cylindrical coordinates introduced, we represent

ps in the form of an outgoing wave

ps ¼ ðKeimj þ Le�imjÞðNeinzC þ Te�inzC ÞH ð2Þm ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� n2

p
rÞ. (17)

Here, K, L, N, T and m, n are constants, H ð2Þm is the Hankel function. Next, we assume that over the above
patch the functional dependence of ps coincides with that of pi within to a constant factor just as in the case of
a plane reflecting surface. Comparing Eq. (17) at r ¼ R and Eq. (16), we find that under this assumption ps

must be independent of zC (i.e. n ¼ 0), K ¼ 0,

m ¼ kR sin g (18)

and

ps ¼ BH ð2Þm ðkrÞe
�imj, (19)

with B ¼ LðN þ TÞ. The constant B is found from the boundary condition (3) imposed at the point P. Taking
into account equalities (2) and q � =qn ¼ q � =qr, we obtain

B ¼ i
piðPÞ½wðPÞ � cos g�

H ð2Þm ðkRÞ½sin g�H
ð2Þ
mþ1ðkRÞ=H ð2Þm ðkRÞ � iwðPÞ�

. (20)

Substituting Eq. (20) in Eq. (19) and Eq. (19) in Eq. (2), we get

pðPÞ ¼ piðPÞ 1þ i
wðPÞ � cos g

sin g�H
ð2Þ
mþ1ðkRÞ=H ð2Þm ðkRÞ � iwðPÞ

" #
, (21)

where g 2 ½0;p�.
In the case of a soft target, we similarly arrive at

B ¼ �piðPÞ=H ð2Þm ðkRÞ (22)

and

vnðPÞ ¼ �
piðPÞ

Z0
cos gþ i sin g� i

H
ð2Þ
mþ1ðkRÞ

H ð2Þm ðkRÞ

" #
, (23)

with the same m and g 2 ½0;p�.
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Fig. 2. Total surface pressure for a rigid surface as a function of R=l at g ¼ 0 and piðPÞ ¼ 1.
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Notice that the plane of incidence (and consequently R) is not defined at two points with g ¼ 0 and p.
However, at m ¼ 0, pðPÞ in Eq. (21) and vnðPÞ in Eq. (23) weakly depend on R=l when R=l40:5. Fig. 2
illustrates this case for a rigid surface. Therefore, as R we can take, for example, the average of possible values
of radius of curvature at P. Practically, this choice does not affect the scattering amplitude since its values are
found from the surface integration.

Let us also show that the PO formulas (11) and (12) are limiting cases of Eqs. (21) and (23) as R!1.
To this end, we derive the asymptotic form of the expression

sin g�
H
ð2Þ
mþ1ðkRÞ

H ð2Þm ðkRÞ
¼

H ð2Þ0ðkRÞ
m

H ð2Þm ðkRÞ
, (24)

which is a component part of the above equations. Let cos b ¼ sin g with 0obop=2. Then

b ¼

p
2
� g for go

p
2
;

g�
p
2

for
p
2
ogop:

8><
>: (25)
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If we use the dominant terms of the known [13] asymptotic expansions, we obtain as R!1

H ð2Þm ðkRÞ ¼ H ð2Þm ðm= cos bÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pm tan b

s
e�i½mðtan b�bÞ�p=4�, (26)

H ð2Þ0m ðkRÞ ¼ H ð2Þ0m ðm= cos bÞ� � i

ffiffiffiffiffiffiffiffiffiffiffiffi
sin 2b
pm

s
e�i½mðtan b�bÞ�p=4�. (27)

Now, in view of Eqs. (25)–(27), we have

H ð2Þ0m ðkRÞ

H ð2Þm ðkRÞ
� � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
sin 2b tan b

r
¼ �isinb ¼

�i cos g for 0ogo
p
2
;

i cos g for
p
2
ogop:

8><
>: (28)

Substituting Eq. (28) into Eqs. (24), (21) and (23), we arrive just at Eqs. (11) and (12). For the angles g ¼ 0,
p=2 and p, the limiting cases can be also easily verified using other [13] asymptotic representations of the
Hankel function.

3. Numerical results

The results plotted in this section were generated using Eqs. (7)–(12), (21) and (23) to illustrate predictions
and demonstrate the accuracy of the approach. Figs. 3 and 4 present data for a target with sufficiently small
(for a high-frequency technique) wave dimensions. In Fig. 3, the pressure and the velocity calculated on the
surface of a sphere of radius R ¼ l are compared with those obtained from the PO approximation and with a
numerical implementation of the exact analytical solution [1]. The origin of the basic coordinate system is at
the centre of the sphere and yi ¼ 0: It is seen, that p and vn computed with the aid of this technique do not
vanish on the shadow part of the target. The data obtained are much better than the PO prediction
qualitatively and quantitatively. Fig. 4 shows the respective angular dependencies for the scattering
magnitude. In the non-specular directions, the improvement is obvious.

Fig. 5 presents dependencies on R=l of the relative mean-square error

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ p

0

jf � f ej
2 dyM

s , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ p

0

jf ej
2 dyM

s
, (29)
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Fig. 3. The (a, b) total surface pressure and (c) surface velocity for (a) rigid, (b) impedance and (c) soft spheres at R=l ¼ 1 (solid lines:

exact; dotted lines: PO; dashed lines: this technique).
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Fig. 5. Relative mean-square error d for (a) rigid, (b) impedance and (c) soft spheres (solid lines: this technique; dotted lines: PO).
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where f e is the exact value of f, for a rigid, impedance and soft sphere. They estimate the accuracy of
approximations for the whole interval ½0;p�. In all the cases, the implementation of this formulation diminishes
the error considerably and allows obtaining quantitatively adequate predictions up to resonant frequency
range. Nevertheless, it is worth to note that R=l should be at least greater than one for a rigid target to achieve
the error, which is less than 10%.

In Fig. 6, we plot the normalized backward and forward cross section as a function of R=l. Again, the
results from the present method agree with the exact solution better than the PO approximation (especially in
forward direction).

Now, let us consider a prolate spheroid whose axis of symmetry corresponds to the z-axis. The origin of the
coordinate system is at the centre of the target and fi ¼ 0. The semi-major axis is b and semi-mine axis is a.
The reduced target strength is defined as RTS ¼ 20 log jf =ð2bÞj.
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Fig. 7 shows comparisons of the computed predictions with the results obtained using the Fourier matching
method (FMM) for a rigid prolate spheroid at broadside and end-on incidences. The FMM curves were taken
from [9] and logarithmic scale on the horizontal axes was replaced by the linear one. It is evident that the
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estimates of RTS found by this technique tend to the known solutions as a=l increases. It should be also noted
that at a=lo2 minimum radius of curvature of the considered spheroid is less than l.

Next two figures present examples of application of the developed technique to estimating bistatic far-field
patterns. Fig. 8 shows the bistatic scattering from the same rigid spheroid. In Fig. 9, we consider a prolate
spheroid with variable surface impedance. Functional dependence w ¼ 1� cos g implements the passage from
the rigid surface on the insonified part of the target to the case of w ¼ 2 in the shadow region. For comparison,
the PO predictions are also given.
4. Conclusions

This paper presents a computationally easy approach to solve approximately high-frequency scattering
problems for 3D convex obstacles bounded by soft, rigid or impedance surfaces. Sample results, which
validate the theory and demonstrate its capabilities, are given. The approach is more accurate than the PO
approximation and keeps the PO-comparable simplicity. It yields quantitatively adequate results up to
resonant frequencies. The improvement in the prediction is especially considerable for the forward scattering.
There is a good potential for further development of this technique including scattering by fluid bodies and
elastic solids.
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